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Overview of numerical methods for SDEs

What is an SDE

Think of an ODE with an extra term of “noise”

dy

dx
= f (y , x) + ξ (1)

The most common notation is

dXt = µ(t,Xt)dt + σ(t,Xt)dWt

X0 = x0
(2)

Where µ and σ are functions of t, x and W is a Brownian
Motion
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Overview of numerical methods for SDEs

Why numerical methods?

We don’t normally know the explicit solution of an SDE
Very often one needs to compute specific quantities from a
process
On Talay 1990 we can find a broader discussion on this topic,
in particular there is a number of results about numerical
methods to compute different quantities from a process Xt

Higham 2001 has an introduction to numerical methods with
code examples
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Overview of numerical methods for SDEs

How are they obtained?

Numerical schemes are derived by truncating the Itô-Taylor
expansion of the SDE we wish to approximate.
The Euler method comes from the first two terms of the
Itô-Taylor expansion, this is

Xtn+1 = Xtn + µ(tn,Xtn)(tn+1 − tn) + σ(tn,Xtn)(Wtn+1 −Wtn)
(3)
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Overview of numerical methods for SDEs

When can we use them?

For equations with good regularity properties the
Euler-Maruyama method has been used for a long time.
Strong and weak approximations have been studied

E[|Xm − X |] ≤ C1m
−rs E[|Xm| − |X |] ≤ C2m

−rw (4)

A good reference resource on the topic is the book Numerical
Solution of Stochastic Differential Equations
Kloeden and Platen 1999

And for a more hands-on approach see Numerical Solution
of SDE Through Computer Experiments
Kloeden, Platen, and Schurz 1997
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Overview of numerical methods for SDEs

How do we know they converge?

Let us focus on the Euler scheme, which is the most widely
studied.
The classical case for which a converegence rate of 1/2 is
obtained, require the coefficients from the SDE of interest to
be Lipschitz continuous and have linear growth.
For equation (2) this means

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)|≤C1|x − y |
|µ(t, x)|+ |σ(t, x)|≤C2(1 + |x |)

|µ(s, x)− µ(t, y)|+ |σ(s, x)− σ(t, x)| ≤ C3(1 − |x |)|s − t|1/2
(5)
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Lipschitz condition visualized

Figure: Visualization of the Lipschitz condition
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What do we mean by irregular coefficients?

The moment we steer away from the regularity conditions
previously stated we are talking about irregular coefficients.
How much can we relax this condition and still obtain
useful results?
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Two examples from finance

The use of the Black-Scholes models as a CAPM
A company takeover
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Figure: Example of diffusion process with volatility dependent on time



Challenges in numerical methods for SDEs with irregular coefficients

Irregular coefficients and where to find them

Two examples from finance

The use of the Black-Scholes models as a CAPM
A company takeover



Challenges in numerical methods for SDEs with irregular coefficients

Irregular coefficients and where to find them

2 4 6 8 10

2

4

6

8

Figure: Example of diffusion process with piecewise defined drift
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Irregular coefficients in the literature

Measurable coefficients in SDEs

Veretennikov 1981 finds that for the case in which Equation
(2) has σ = 1 and µ is merely bounded, there is a strong
solution
Gyongy and Martinez 2001 find a regularisation by noise

result for SDEs with locally unbounded drifts
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Irregular coefficients in the literature

Distributional coefficients in SDEs

Cannizzaro and Chouk 2018 frame it as a martingale problem
and approach it with paracontrolled distributions
Issoglio and Russo 2022 have an equation with a drift in a

negative Besov space and a unit diffusion, they frame it as a
martingale problem and introduce a notion of solution which
agrees with their martingale problem solution
Related works include Delarue and Diel 2016 and
Chaudru de Raynal and Menozzi 2022
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What problems do we face?

In principle, nothing stops us from just implement the function
we want on the computer
The main problem is the lack of theory which assures us a
numerical method will converge
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SDEs with Measurable coefficients

There were two important approaches regarding drifts which
are still functions in the classical sense µ:
Allow discontinuities on a small set
Having a mild condition
Dareiotis and Gerencsér 2020 found that just by having
measurable and bounded coefficients we can get a convergence
rate 1/2 just as for the regular case.
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Distributional coefficients in SDEs

Regularisation by noise allows us to use the noise to regularise
even distributional drifts
De Angelis, Germain, and Issoglio 2022 work with drifts in
fractional Sobolev spaces and propose the usage of Haar and
Faber basis to create numerical approximation which will be
further mollified by applying the heat semigroup
Goudenège, Haress, and Richard 2022 study equations with
fractional Brownian motion (H < 1/2) as a noise drifts in
Hölder-Zygmund spaces
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On my current work

I am working with the SDE that is studied by Issoglio and
Russo 2022

dXt = b(t,Xt)dt +Wt (6)

In particular with the drift b = “ d
dx ”B

H where BH is a
trajectory of fractional Brownian motion
The approximation of the drift for the numerical
approximations is defined as the convolution of b with the
Gaussian density pfm where fm = 1/mη is the variance
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Picture of fBm

Figure: This picture illustrates two examples of fBm. The object we need
as a drift is the weak derivative of such paths
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Convergence of the Euler scheme

For this equation we found a strong convergence rate

sup
0≤t≤T

E[|Xm
t − Xt |] ≤ cm−r(β̂)+ϵ, (7)

Where

r(β̂) =

(
1
2 − β̂

)2

2
(

1
2 − β̂

)2
+ β̂ + 1

(8)

And β̂ is the regularity of the drift, and it means the Hurst
parameter of fBm used is H = 1 − β̂

On the limit cases:
β → 0, we have r(β̂) = 1/6 − ϵ
β → 1/2, we have r(β̂) = ϵ
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And about the implementation...

One step towards the implementation comes from the fact
that we want a mollified version of this derivative
And we can compute b ⋆ pfm = d

dxB
H ⋆ pfm as BH ⋆ d

dx pfm
Some of the issues are:

The errors between consecutive Euler approximations don’t
seem to decrease as fast as they should
Implementing the drift can be challenging because of the
vanishing variance
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Conclusion

Irregular coefficients on SDEs have gotten a lot of attention
not only for theoretical reasons but because of their potential
practical uses
Theoretical results are useful but I believe it’s necessary to give
much more attention to the intrincacies of the implementations
My implementation will potentially help generalise the
numerical methods for one particular type of SDE
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Buon appetito!
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